Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Biol X ; 9: 100096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38318529

RESUMO

Milk contains high concentrations of amyloidogenic casein proteins and is supersaturated with respect to crystalline calcium phosphates such as apatite. Nevertheless, the mammary gland normally remains unmineralized and free of amyloid. Unlike κ-casein, ß- and αS-caseins are highly effective mineral chaperones that prevent ectopic and pathological calcification of the mammary gland. Milk invariably contains a mixture of two to five different caseins that act on each other as molecular chaperones. Instead of forming amyloid fibrils, several thousand caseins and hundreds of nanoclusters of amorphous calcium phosphate combine to form fuzzy complexes called casein micelles. To understand the biological functions of the casein micelle its structure needs to be understood better than at present. The location in micelles of the highly amyloidogenic κ-casein is disputed. In traditional hydrophobic colloid models, it, alone, forms a stabilizing surface coat that also determines the average size of the micelles. In the recent multivalent-binding model, κ-casein is present throughout the micelle, in intimate contact with the other caseins. To discriminate between these models, a range of biomimetic micelles was prepared using a fixed concentration of the mineral chaperone ß-casein and nanoclusters of calcium phosphate, with variable concentrations of κ-casein. A biomimetic micelle was also prepared using a highly deuterated and in vivo phosphorylated recombinant ß-casein with calcium phosphate and unlabelled κ-casein. Neutron and X-ray scattering experiments revealed that κ-casein is distributed throughout the micelle, in quantitative agreement with the multivalent-binding model but contrary to the hydrophobic colloid models.

2.
J Biol Chem ; 299(4): 104568, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870681

RESUMO

The RIP homotypic interaction motif (RHIM) is an essential protein motif in inflammatory signaling and certain cell death pathways. RHIM signaling occurs following the assembly of functional amyloids, and while the structural biology of such higher-order RHIM complexes has started to emerge, the conformations and dynamics of nonassembled RHIMs remain unknown. Here, using solution NMR spectroscopy, we report the characterization of the monomeric form of the RHIM in receptor-interacting protein kinase 3 (RIPK3), a fundamental protein in human immunity. Our results establish that the RHIM of RIPK3 is an intrinsically disordered protein motif, contrary to prediction, and that exchange dynamics between free monomers and amyloid-bound RIPK3 monomers involve a 20-residue stretch outside the RHIM that is not incorporated within the structured cores of the RIPK3 assemblies determined by cryo-EM or solid-state NMR. Thus, our findings expand on the structural characterization of RHIM-containing proteins, specifically highlighting conformational dynamics involved in assembly processes.


Assuntos
Amiloide , Proteínas Amiloidogênicas , Humanos , Amiloide/química , Morte Celular , Proteínas Amiloidogênicas/metabolismo , Transdução de Sinais , Espectroscopia de Ressonância Magnética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
3.
Commun Biol ; 6(1): 124, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721030

RESUMO

Group A Streptococcus (GAS) is a strict human pathogen possessing a unique pathogenic trait that utilizes the cooperative activity of NAD+-glycohydrolase (NADase) and Streptolysin O (SLO) to enhance its virulence. How NADase interacts with SLO to synergistically promote GAS cytotoxicity and intracellular survival is a long-standing question. Here, the structure and dynamic nature of the NADase/SLO complex are elucidated by X-ray crystallography and small-angle scattering, illustrating atomic details of the complex interface and functionally relevant conformations. Structure-guided studies reveal a salt-bridge interaction between NADase and SLO is important to cytotoxicity and resistance to phagocytic killing during GAS infection. Furthermore, the biological significance of the NADase/SLO complex in GAS virulence is demonstrated in a murine infection model. Overall, this work delivers the structure-functional relationship of the NADase/SLO complex and pinpoints the key interacting residues that are central to the coordinated actions of NADase and SLO in the pathogenesis of GAS infection.


Assuntos
Streptococcus , Estreptolisinas , Humanos , Animais , Camundongos , Proteínas de Bactérias , NAD+ Nucleosidase
4.
Methods Enzymol ; 677: 85-126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36410963

RESUMO

Small angle neutron scattering is a powerful complementary technique in structural biology. It generally requires, or benefits from, deuteration to achieve its unique potentials. Molecular deuteration has become a mature expertise, with deuteration facilities located worldwide to support access to the technique for a wide breadth of structural biology and life sciences. The sorts of problems well answered by small angle scattering and deuteration involve large (>10Å) scale flexible movements, and this approach is best used where high-resolution methods (crystallography, NMR, cryo-EM) leave questions unanswered. This chapter introduces deuteration, reviewing biological deuteration of proteins, lipids and sterols, and then steps through the ever-expanding range of deuterated molecules being produced by chemical synthesis and enabling sophisticated experiments using physiologically relevant lipids. Case studies of recent successful use of deuteration may provide illustrative examples for strategies for future experiments. We discuss issues of nomenclature for synthesised molecules of novel labeling and make recommendations for their naming. We reflect on our experiences, with cost associated with achieving an arbitrary deuteration level, and on the benefits of experimental co-design by user scientist, deuteration scientist, and neutron scattering scientist working together. Although methods for biological and chemical deuteration are published in the public domain, we recommend that the best method to deuterate is to engage with a deuteration facility.


Assuntos
Biologia Molecular , Nêutrons , Espalhamento a Baixo Ângulo , Cristalografia , Lipídeos
5.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 75-90, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981764

RESUMO

Disulfide-bond-forming proteins (Dsbs) play a crucial role in the pathogenicity of many Gram-negative bacteria. Disulfide-bond-forming protein A (DsbA) catalyzes the formation of the disulfide bonds necessary for the activity and stability of multiple substrate proteins, including many virulence factors. Hence, DsbA is an attractive target for the development of new drugs to combat bacterial infections. Here, two fragments, bromophenoxy propanamide (1) and 4-methoxy-N-phenylbenzenesulfonamide (2), were identified that bind to DsbA from the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis. The crystal structures of oxidized B. pseudomallei DsbA (termed BpsDsbA) co-crystallized with 1 or 2 show that both fragments bind to a hydrophobic pocket that is formed by a change in the side-chain orientation of Tyr110. This conformational change opens a `cryptic' pocket that is not evident in the apoprotein structure. This binding location was supported by 2D-NMR studies, which identified a chemical shift perturbation of the Tyr110 backbone amide resonance of more than 0.05 p.p.m. upon the addition of 2 mM fragment 1 and of more than 0.04 p.p.m. upon the addition of 1 mM fragment 2. Although binding was detected by both X-ray crystallography and NMR, the binding affinity (Kd) for both fragments was low (above 2 mM), suggesting weak interactions with BpsDsbA. This conclusion is also supported by the crystal structure models, which ascribe partial occupancy to the ligands in the cryptic binding pocket. Small fragments such as 1 and 2 are not expected to have a high energetic binding affinity due to their relatively small surface area and the few functional groups that are available for intermolecular interactions. However, their simplicity makes them ideal for functionalization and optimization. The identification of the binding sites of 1 and 2 to BpsDsbA could provide a starting point for the development of more potent novel antimicrobial compounds that target DsbA and bacterial virulence.


Assuntos
Antibacterianos/química , Burkholderia pseudomallei/química , Antibacterianos/farmacologia , Sítios de Ligação , Burkholderia pseudomallei/efeitos dos fármacos , Cristalografia por Raios X , Dissulfetos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
6.
J Biomol NMR ; 74(10-11): 595-611, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32761504

RESUMO

The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as 'druggable'. Many disease-related proteins that function solely through protein-protein interactions lack such pockets, making development of inhibitors by traditional small-molecule structure-based design methods much more challenging. The 22 kDa bacterial thiol oxidoreductase enzyme, DsbA, from the gram-negative bacterium Burkholderia pseudomallei (BpsDsbA) is an example of one such target. The crystal structure of oxidized BpsDsbA lacks well-defined surface pockets. BpsDsbA is required for the correct folding of numerous virulence factors in B. pseudomallei, and genetic deletion of dsbA significantly attenuates B. pseudomallei virulence in murine infection models. Therefore, BpsDsbA is potentially an attractive drug target. Herein we report the identification of a small molecule binding site adjacent to the catalytic site of oxidized BpsDsbA. 1HN CPMG relaxation dispersion NMR measurements suggest that the binding site is formed transiently through protein dynamics. Using fragment-based screening, we identified a small molecule that binds at this site with an estimated affinity of KD ~ 500 µM. This fragment inhibits BpsDsbA enzymatic activity in vitro. The binding mode of this molecule has been characterized by NMR data-driven docking using HADDOCK. These data provide a starting point towards the design of more potent small molecule inhibitors of BpsDsbA.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteína Dissulfeto Redutase (Glutationa)/química , Animais , Sítios de Ligação , Burkholderia pseudomallei/enzimologia , Burkholderia pseudomallei/patogenicidade , Domínio Catalítico , Ligantes , Camundongos , Oxirredução , Ligação Proteica , Conformação Proteica , Proteína Dissulfeto Redutase (Glutationa)/genética , Relação Quantitativa Estrutura-Atividade , Proteínas Recombinantes , Bibliotecas de Moléculas Pequenas/química , Solubilidade , Tiazóis/química
7.
Commun Biol ; 1: 58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271940

RESUMO

Transient interactions in which binding partners retain substantial conformational disorder play an essential role in regulating biological networks, challenging the expectation that specificity demands structurally defined and unambiguous molecular interactions. The monoclonal antibody 6D8 recognises a completely conserved continuous nine-residue epitope within the intrinsically disordered malaria antigen, MSP2, yet it has different affinities for the two allelic forms of this antigen. NMR chemical shift perturbations, relaxation rates and paramagnetic relaxation enhancements reveal the presence of transient interactions involving polymorphic residues immediately C-terminal to the structurally defined epitope. A combination of these experimental data with molecular dynamics simulations shows clearly that the polymorphic C-terminal extension engages in multiple transient interactions distributed across much of the accessible antibody surface. These interactions are determined more by topographical features of the antibody surface than by sequence-specific interactions. Thus, specificity arises as a consequence of subtle differences in what are highly dynamic and essentially non-specific interactions.

8.
J Mol Biol ; 429(6): 836-846, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28189425

RESUMO

Merozoite surface protein 2 (MSP2) is an intrinsically disordered antigen that is abundant on the surface of the malaria parasite Plasmodium falciparum. The two allelic families of MSP2, 3D7 and FC27, differ in their central variable regions, which are flanked by highly conserved C-terminal and N-terminal regions. In a vaccine trial, full-length 3D7 MSP2 induced a strain-specific protective immune response despite the detectable presence of conserved region antibodies. This work focuses on the conserved C-terminal region of MSP2, which includes the only disulphide bond in the protein and encompasses key epitopes recognised by the mouse monoclonal antibodies 4D11 and 9H4. Although the 4D11 and 9H4 epitopes are overlapping, immunofluorescence assays have shown that the mouse monoclonal antibody 4D11 binds to MSP2 on the merozoite surface with a much stronger signal than 9H4. Understanding the structural basis for this antigenic difference between these antibodies will help direct the design of a broad-spectrum and MSP2-based malaria vaccine. 4D11 and 9H4 were reengineered into antibody fragments [variable region fragment (Fv) and single-chain Fv (scFv)] and were validated as suitable models for their full-sized IgG counterparts by surface plasmon resonance and isothermal titration calorimetry. An alanine scan of the 13-residue epitope 3D7-MSP2207-222 identified the minimal binding epitope of 4D11 and the key residues involved in binding. A 2.2-Å crystal structure of 4D11 Fv bound to the eight-residue epitope NKENCGAA provided valuable insight into the possible conformation of the C-terminal region of MSP2 on the parasite. This work underpins continued efforts to optimise recombinant MSP2 constructs for evaluation as potential vaccine candidates.


Assuntos
Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Epitopos/genética , Epitopos/imunologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/química , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Calorimetria , Cristalografia por Raios X , Epitopos/química , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Ressonância de Plasmônio de Superfície
9.
Methods Enzymol ; 565: 3-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26577725

RESUMO

We have developed a method that has proven highly reliable for the deuteration and triple labeling ((2)H/(15)N/(13)C) of a broad range of proteins by recombinant expression in Escherichia coli BL21. Typical biomass yields are 40-80g/L wet weight, yielding 50-500mg/L purified protein. This method uses a simple, relatively inexpensive defined medium, and routinely results in a high-yield expression without need for optimization. The key elements are very tight control of expression, careful starter culture adaptation steps, media composition, and strict maintenance of aerobic conditions ensuring exponential growth. Temperature is reduced as required to prevent biological oxygen demand exceeding maximum aeration capacity. Glycerol is the sole carbon source. We have not encountered an upper limit for the size of proteins that can be expressed, achieving excellent expression for proteins from 11 to 154kDa and the quantity produced at 1L scale ensures that no small-angle neutron scattering, nuclear magnetic resonance, or neutron crystallography experiment is limited by the amount of deuterated material. Where difficulties remain, these tend to be cases of altered protein solubility due to high protein concentration and a D2O-based environment.


Assuntos
Marcação por Isótopo , Proteínas/química , Espectroscopia de Ressonância Magnética , Nêutrons , Conformação Proteica , Espalhamento de Radiação
10.
Angew Chem Int Ed Engl ; 51(50): 12621-5, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23125123

RESUMO

GrEASy fibrils: Hydrophobins are fungal proteins that assemble into an amphipathic fibrillar monolayer with amyloid properties and a hydrophobic face as water-resistant as Teflon. Solid-state NMR studies on EAS hydrophobin fibrils reveal direct evidence of a partial molecular rearrangement on assembly and an ordered ß-sheet-rich core in the context of a whole protein in this functional amyloid.


Assuntos
Amiloide/química , Proteínas Fúngicas/química , Sequência de Aminoácidos , Dicroísmo Circular , Fungos/metabolismo , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Secundária de Proteína
11.
Eur Biophys J ; 37(5): 711-5, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18481053

RESUMO

The cultivation of microorganisms on deuterated substrates has allowed us to control deuterium incorporation into biopolymer systems which is important for characterisation using neutron scattering techniques. Bacterial polyhydroxyoctanoate (PHO) is a polyester formed within inclusions inside bacterial cells and was deuterated in vivo under various conditions to characterise the formation of these inclusions by neutron scattering. Manipulation of deuterated media during microbial growth and PHO production phases resulted in polymer with partial or complete substitution of hydrogen by deuterium, as shown by gas chromatography. Sequential feeding of hydrogenated and deuterated forms of the same precursor was used to demonstrate that neutron scattering analysis could be used to differentiate between chemically similar phases in these polymer inclusions.


Assuntos
Deutério/metabolismo , Difração de Nêutrons , Poliésteres/metabolismo , Pseudomonas oleovorans/metabolismo , Espalhamento a Baixo Ângulo
12.
J Biotechnol ; 132(3): 303-5, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17555837

RESUMO

This work reports on the biosynthesis of polyhydroxyalkanoates with medium chain length alkyl substituents in the side chain by Pseudomonas oleovorans using hydrogenated and deuterated substrates. These investigations aimed to obtain polyhydroxyalkanoates with varying degrees of deuterium substitution, and establish whether they are suitable analogues for structural investigation. In order to understand the formation and structure of inclusions in their native state, whole inclusions were isolated from microbial cells and were analysed using Small Angle Neutron Scattering. A contrast variation study was conducted on hydrogenated and deuterated inclusions of polyhydroxyoctanoate, as well as inclusions resulting from co-feeding or sequentially feeding different precursors. The data indicated a core/shell structure resulting from feeding hydrogenated followed by perdeuterated PHO precursor, and demonstrated the utility of this analysis for characterising chemically similar systems.


Assuntos
Deutério/metabolismo , Corpos de Inclusão/química , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas oleovorans/metabolismo , Caprilatos/metabolismo , Poli-Hidroxialcanoatos/química
13.
Arch Environ Contam Toxicol ; 51(2): 174-85, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16583260

RESUMO

Copper and zinc toxicity to the freshwater alga Chlorella sp. was determined at a range of pH values (5.5-8.0) in a synthetic softwater (hardness 40-48 mg CaCO(3)/L). The effects of the metals on algal growth (cell division) rate were determined after 48-h exposure at pH 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0. The toxicity of both metals was pH dependent. As pH decreased from 8.0 to 5.5, the copper concentration required to inhibit the algal growth rate by 50% (IC50) increased from 1.0 to 19 microg/L. For zinc, the IC50 increased from 52 to 2,700 microg/L over the same pH range. Changes in solution speciation alone did not explain the increased toxicity observed as the pH increased. Modelled Cu(2+) and Zn(2+) concentrations decreased with increasing pH, whereas toxicity was observed to increase. Measurements of extracellular (cell-bound) metal concentrations support the biotic ligand model (BLM) theory of competition between protons (H(+)) and metals for binding sites at the algal cell surface. Higher extracellular metal concentrations were observed at high pH, indicating reduced competition. Independent of pH, both extracellular and intracellular copper were directly related to growth inhibition in Chlorella sp., whereas zinc toxicity was related to cell-bound zinc only. These findings suggest that the algal cell surface may be considered as the biotic ligand in further development of a chronic BLM with microalgae. Conditional binding constants (log K) were determined experimentally (using measured intracellular metal concentrations) and theoretically (using concentration-response curves) for copper and zinc for Chlorella sp. at selected pH values. Excellent agreement was found indicating the possibility of using concentration-response data to estimate conditional metal-cell binding constants.


Assuntos
Chlorella/efeitos dos fármacos , Cobre/toxicidade , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Cobre/metabolismo , Água Doce , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/metabolismo , Zinco/metabolismo
14.
Environ Sci Technol ; 39(7): 2067-72, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15871238

RESUMO

The freshwater green microalgae Chlorella sp. and Pseudokirchneriella subcapitata (P. subcapitata) were chronically (48 and 72 h, respectively) exposed to copper at various pH levels, i.e., pH 6-7.5 and pH 5.9-8.5, respectively. Concentrations resulting in 50% inhibition of exponential growth rate (EC50) were determined as dissolved Cu, estimated chemical activity of the free Cu2+ ion (as pCu = - log{Cu2+ activity as molarity}), and as external (surface-bound) Cu and internal Cu in the algal cells. With increasing pH, EC50dissolved decreased from 30 to 1.1 microg of Cu L(-1) for Chlorella sp. and from 46 to 18 microg of Cu L(-1) for P. subcapitata. The pH effect on copper toxicity was even more obvious when expressed as Cu2+ activity. The EC50pCu increased on average 1.4 pCu unit per pH unit for Chlorella sp. and 1.1 pCu unit per pH unit for P. subcapitata, thus indicating a marked increase of Cu2+ toxicity at higher pH (more than 1 order of magnitude per pH unit). In contrast, it was found that EC50 values expressed as surface bound or external copper (EC50external) and as internal copper (EC50internal) did not vary substantially when pH was increased. External Cu was operationally defined as the Cu fraction removable from the algal cell by short-term contact with ethylenediaminetetraacetic acid; internal copper was defined as the nonremovable fraction. For Chlorella sp. the EC50external varied between 5 and 10 fg of Cu/ cell (factor of 2 difference) and the EC50internal between 25 and 40 fg of Cu/cell (factor of 1.6 difference). For P. subcapitata the EC50external varied between 10 and 28 fg of Cu/cell (factor of 2.8 difference) and the EC50internal between 42 and 71 fg of Cu/cell (factor of 1.7 difference). Because the observed variation in EC50external and EC50internal is much less than the variation in EC50Cu2+, it is concluded that both external and internal copper are better predictors of copper toxicity than Cu2+ when pH is varied. From the perspective of toxicity modeling, this observation is the first step toward considering the use of the cell surface as the algal biotic ligand for Cu in a similar way as fish gills fulfill this role in the biotic ligand model for predicting metal toxicity to fish species.


Assuntos
Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Cobre/toxicidade , Modelos Químicos , Clorófitas/crescimento & desenvolvimento , Cobre/metabolismo , Cobre/farmacocinética , Ácido Edético , Água Doce , Concentração Inibidora 50 , Ligantes , Papua Nova Guiné
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...